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Polycomb group (PcG) proteins are important epigenetic regulators, yet the underlying targeting mechanism
in mammals is still poorly understood. We have developed a computational approach to predict genome-
wide PcG target genes in mouse embryonic stem cells. We use TF binding and motif information as predictors
and apply the Bayesian Additive Regression Trees (BART) model for classification. Our model has good
prediction accuracy. The performance can be mainly explained by five TF features (Zf5, Tcfcp2l1, Ctcf, E2f1,
Myc). Our analysis of H3K27me3 and gene expression data suggests that genomic sequence is highly
correlated with the overall PcG target plasticity. We have also compared the PcG target sequence signatures
between mouse and Drosophila and found that they are strikingly different. Our predictions may be useful for
de novo search for Polycomb response elements (PRE) in mammals.
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Introduction

PcG proteins were first discovered in Drosophila for their ability to
silence Hox genes [1]. Subsequent studies have shown that PcG
proteins regulate a large number of genes and play an important role
in early development in many species, including human [2–5]. A
major function of PcG proteins is to repress the transcriptional
activities of their target genes through tri-methylation of the histone
H3 on lysine 27 residue (H3K27me3). The mammalian PcG proteins
form two major complexes: Polycomb repressive complex 1 (PRC1)
and Polycomb repressive complex 2 (PRC2). Both complexes are
required for gene silencing [3,5,6], whereas the histone methyltrans-
ferase activity is carried out by two PRC2 members: Ezh2 and Ezh1
[3,7,8]. Recent studies have shown that PcG proteins are critical for the
maintenance of stem cell identity and cell differentiation [9,10]. In
mammalian ESCs, PcG proteins bind to several thousand genes,
typically localizing in promoter regions [7,11]. Many of these target
genes (hereinafter, target genes mean physical binding targets) are
developmental regulators [7,9–15], which are repressed in ESCs but
can be activated during cell-differentiation as the PcG complexes
disassociate from the promoters.

A fundamental yet unresolved question is how PcG proteins are
recruited to specific target genes. The question is relatively well-
understood in Drosophila but remains unclear in mammals [3,5]. In
Drosophila, it is known that the DNA sequence plays an important role
in PcG targeting. In particular, the PcG proteins are recruited to
specific DNA regulatory elements called Polycomb Response Elements
(PREs), which can recruit PcG binding independent of the surround-
ing environment [4]. Bioinformatic studies have shown that the DNA
sequences of the PREs can be well characterized by a number of TF
motifs including Pho, GAF, and Zeste [16–18]. An important
observation from these studies is that proper combinations of
multiple of TFs are required for the maintenance of PcG targeting. A
high level of accuracy has been achieved by computational methods
which have been developed to predict genome-wide PREs by
combination of TF [16,19].

In mammals, it remains unclear to what extent the DNA sequence
plays a role in PcG targeting. Unsupervised search of mammalian PREs
is difficult and has only led to isolated successes [20,21]. Insights can
be gained by computational studies aimed at detection of discrimi-
native DNA sequence features. Previous studies have identified a
number of TFmotifs that are associatedwith PcG targets [11,22], but it
remains unclear to what extent genome-wide target genes can be
explained by combinations of different TF motifs. Furthermore, more
general DNA sequence features have also been found to be associated
with PcG targets, including high CpG density [13,23], high sequence
conservation score [23], depletion of DNA transposons [13], and
periodic patterns of dinucleotide frequencies [24]. The roles of these
more general features are even less understood. More recently, it has
been recognized that PcG can physically interact with non-coding
RNAs [25–27], providing an indirect mechanism for sequence specific
targeting. The genome-wide impact of noncoding RNA mediated
targeting is still unclear.

The goal of this paper is to investigate to what extent genome-
wide PcG targets in mammals can be explained by combinations of TF
binding patterns. We focus on TFs rather than general DNA sequence
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Fig. 1. Enrichment analysis for overlaps between TF and PcG targets. (A) The 15 TFs
probed by ChIP-chip/seq experiments in mouse ESCs. The statistically significant one
are marked by asterisks (pb1.0E-7 from one-sided Fisher exact test with Bonferroni
correction). (B) The most enriched or depleted TF motifs.
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features to facilitate biological interpretations. To this end, we have
developed a computational approach to predict PcG target genes by
combining ChIP-chip/seq data (referring to the collection of ChIP-chip
and ChIP-seq data, which are chromatin immunoprecipitation
followed by microarray or DNA sequencing, respectively) and motif
sequence information. Notice that the ChIP-chip/seq data may also
contain sequence independent information such as local chromatin
configuration. Our model can predict PcG target genes in mouse ESCs
with good accuracy. A similar approach based on the sequence
information alone has a comparable model performance. The model
performance is primarily due to the presence of five TF features
(either binding data or motif sequences): Zf5, Tcfcp2l1, Ctcf, E2f1, and
Myc.

Although our model is trained based on ESC specific data, the
predictions actually reflect information about the overall target
plasticity across cell-types. This is supported by several observations
including that the genes with high scores tend to be marked by
H3K27me3 in multiple lineages, to remain repressed during the early
stage of in vitro cell differentiation, and to retain H3K27me3 upon
Ezh2 deletion. We compared the target sequence properties between
Drosophila and mouse and identified both similarities and differences.
Interestingly, the TF homolog pair Pho/Yy1 seems to play very
different roles in PcG targeting between Drosophila and mouse.

Results

Enrichment of TF binding and motif sites in PcG target genes

Numerous groups have previously applied ChIP-chip/seq methods
to identify genome-wide locations of PcG and H3K27me3 targets in
mouse ESCs [7,9–15]. Our analysis here is based on a recent dataset
containing genome-wide targets of Ezh1, Ezh2, and loci harboring a
H3K27me3 signature, identified by using biotinylation-mediated ChIP
(bioChIP) followed by whole-genome tiling array hybridization [7].
The bioChIP approach is advantageous over traditional ChIP because it
circumvents the problem associated with antibody availability. The
majority of the target sites fall into promoter regions, defined here as
the [-8kb, +2kb] region with respect to a transcription start site
(TSS). Therefore, we focused on the promoter regions and aimed at
detecting discriminative TF features associated with those targeted by
the PcG proteins. In total we identified 4010 promoters that
overlapped with a PcG target site. We obtained the genome-wide
locations of 15 TFs in ESCs previously identified by ChIP-chip/seq
experiments [28,29], and then tested whether the TF binding sites
were enriched or depleted with PcG target promoters. We identified
three enriched TFs: Esrrb, Ctcf, and Tcfcp2l1 (pb1.0E-32; the p-values
here and after are obtained from the Fisher exact test with Bonferroni
correction if not explicitly stated otherwise) and four depleted ones:
Myc, E2f1, Rex1 (Zfp42), and Zfx (pb1.0E-7) (Fig. 1A). Of the above
TFs, Myc, Rex1, and Ctcf have been previously linked to PcG mediated
gene silencing [28,30]. Interestingly, while Oct4 (Pou5f1), Nanog, and
Sox2 share many common targets with PcG [9], their overall
enrichment is not significant. This is not surprising because a main
function of these pluripotent TFs is to activate ESC-specific genes,
which are not targeted by PcG.

Only a few TFs have been directly interrogated by ChIP-chip/seq
experiments to date. For other TFs, sequence motifs provide a useful
tool for the computational prediction of binding targets. We down-
loaded all 569 vertebrate TF motifs in the TRANSFAC database
(Release 10.1) [31], and scanned genome-wide promoter sequences
for matching sites. A match is quantified as a continuous motif
matching score. By thresholding the motif matching scores, we also
obtained binary calls indicating the presence or absence of a motif site
at a given promoter (Materials and Methods). A total of 50 motifs are
significantly enriched in the promoter regions of PcG target genes
(pb1.0 E-5) although the degree of enrichment is mostly moderate
(some extreme examples are shown Table 1, and a complete list is
shown in Supplemental Table 1). These motifs correspond to 39
distinct TFs due to redundancy. Some of these TFs have been
implicated to interact with PcG proteins in the literature, such as
E2f family members, Sp1, NRSF/Rest, and Myc [11,32–35]. Interest-
ingly, we also found 7 motifs that are significantly depleted in PcG
targets (pb1.0 E-5), of which Pax and Yy1 have been previously linked
to PcG binding in the literature [11,36,37]. Our results are consistent
with a previous study [11].

Prediction and validation of PcG target genes in mESCs

While statistically significant, the relative enrichment of the each
associated TF is only moderate. The situation in Drosophila is similar
and it has been shown that enhanced specificity can be achieved by
considering combinatorial binding patterns [16]. This motivated us to
build a statistical model to predict genome-wide PcG targets in mouse
ESCs from combinations of TF features corresponding to either
binding data or motif information. Due to the complex relationship
between TF features and PcG binding, we applied a recently
developed flexible statistical method called Bayesian Additive
Regression Trees (BART) [38], which has been recently shown [39]
to be more powerful than a number of traditional methods including
Lasso [40] and support vector machine (SVM) [41]. BART is a sum-of-
tree model (see Methods and Materials for details). Its superior
performance can be attributed to two important properties. First,



Table 1

Motif Name Bias (mouse) p-value (mouse) Bias (Drosophila) p-value (Drosophila) Motif Logo

A. Enrichment analysis for mouse TF motifs: (p-values are calculated based on one-sided Fisher exact tests with Bonferroni correction).

V$E2F_Q2 enriched 0.00E+00 enriched 5.09E-02

V$ETF_Q6 enriched 1.26E-240 enriched 8.28E-02

V$MOVOB_01 enriched 6.41E-177 enriched 6.88E-06

V$ZF5_01 enriched 4.30E-155 enriched 8.88E-01

V$AP2ALPHA_01 enriched 5.17E-152 enriched 5.01E-10

V$CHCH_01 enriched 1.64E-147 enriched 5.01E-10

V$AP2GAMMA_01 enriched 1.90E-141 enriched 5.01E-10

V$SP1_Q6_01 enriched 6.33E-71 enriched 9.22E-01

V$YY1_Q6 depleted 2.58E-06 enriched 3.15E-02

V$CHOP_01 depleted 1.28E-07 depleted 1.00E+00

V$OCT1_Q5_01 depleted 7.19E-08 enriched 1.00E+00

V$XPF1_Q6 depleted 1.82E-08 depleted 1.00E+00

V$HNF3ALPHA_Q6 depleted 8.86E-12 enriched 7.46E-01

V$E2A_Q2 depleted 3.50E-19 depleted 1.00E+00

V$PAX_Q6 depleted 6.42E-48 enriched 3.39E-01

B. Enrichment analysis for Drosophila TF motifs: (p-values are calculated based on one-sided Fisher exact tests with Bonferroni correction).

DSP1_long enriched 1.00E+00 enriched 7.98E-23

GAF_short enriched 1.52E-18 enriched 8.18E-21

DSP1_short enriched 3.54E-03 enriched 4.02E-18

GAF_long enriched 7.56E-29 enriched 4.55E-06

PHO_short depleted 2.64E-12 enriched 3.46E-04

GT_repeat enriched 3.67E-18 enriched 4.18E-04

PHOL_short depleted 1.82E-02 depleted 1.19E-03

PHO_long depleted 7.77E-07 enriched 3.38E-02

ZESTE enriched 1.00E+00 depleted 9.56E-02

(continued on next page)
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Fig. 2. Prediction accuracy for the BART model. (A) ROC curves and corresponding AUC
scores for genome-wide PcG target promoter predictions. We present results for two
versions of the BART model: the full-version (red) and the motif-only version (green).
Also shown are results based on the CpG density (blue) and random guess (black).
(B) ROC curves and corresponding AUC scores for PcG positive CpG island predictions.
The two curves correspond to all CpG islands (red) and the overlapping subset between
our study and Ku et al. 2008 (blue), respectively.

Table 1 (continued)

Motif Name Bias (mouse) p-value (mouse) Bias (Drosophila) p-value (Drosophila) Motif Logo

PHOL_long depleted 2.08E-02 depleted 1.00E+00

polyA depleted 6.15E-09 depleted 1.00E+00

TGC_triplet enriched 1.34E-16 enriched 1.00E+00

B. Enrichment analysis for Drosophila TF motifs: (p-values are calculated based on one-sided Fisher exact tests with Bonferroni correction).
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BART is able to capture nonlinear relationships among the sequence
features, which is important since it has been shown inDrosophila that
combinations of TFs are important for PcG targeting [16]. Second,
BART integrates information from a large number of classifiers
thereby enhancing the robustness against heterogeneity among
different PcG targets.

For each gene, we combined the matching scores for the 569
downloaded motifs with the ChIP-chip/seq data for the 7 differen-
tially associated TFs mentioned above (also see Fig. 1A). The resulting
576 dimensional TF features were used as predictors for PcG targeting.
The detailed implementation is described in the Materials and
Methods section. The model performance was evaluated using a
variation of the three-fold cross-validation (Materials and Methods).
The average receiver operating characteristic (ROC) curve and the
corresponding area under the curve (AUC) score are shown in Fig. 2A.
A random classificationmodel corresponds to an AUC score of 0.5, and
a perfect classification model has an AUC score of 1.0. Our model has
good prediction accuracy. It has an AUC of 0.8266 when all 576 TF
features are included as predicting variables (full-version) and of
0.7951 if only information from the 569 motifs (motif-only version) is
included, suggesting that prediction accuracy is primarily contributed
by the DNA sequence. We compared the model performance of SVM
and Lasso and found that BART indeed provided higher prediction
accuracy (Supplemental Fig. 1).

In additional to TRANSFAC, there are two additional large-scale
motif databases available: JASPAR [42] and UniPROBE [43]. We
recognized that each database has its own advantages and drawbacks
therefore tested the model performance by using these other
databases instead. For each of these additional TFs, we obtained the
gene-specific motif matching scores and used these matching scores
as predictors as for TRANSFAC. However, these other two databases
did not perform as well as TRANSFAC (Supplemental Fig. 2). This is
probably due to the fact that TRANSFAC is more comprehensive than
the other two databases, which consist of higher quality motifs.

Another concern is that either the model performance or the
detected TF features may be sensitive to the experimental platform
where the binding data were obtained. To address this issue, we
noticed that the TFs Oct4, Nanog, Sox2, Klf4, andMyc, were queried in
both Chen et al. [29] and Kim et al. [28] studies. In the above analysis,
the binding information for these common TFs were obtained from
ref. [28]. We repeated the analysis by using the data from ref. [29]
instead. The model performance is similar (Supplemental Fig. 3).

To gain biological insights into which TFs are most informative,
we ranked the TF features according to the BART counts (Supple-
mental Table 2). A higher ranked TF feature is considered more
important since its distribution is more informative of PcG targeting
status. We repeated the above procedure and built reduced versions
of the model by keeping only the top ranked TF features as the
predicting variables.With 18 features only, the prediction accuracy is
nearly the same as the full-version (AUC=0.8270). Strikingly, the
model still performs reasonably well (AUC=0.79) even with only
5 features, corresponding to E2f1, Zf5, Tcfcp2l1, Myc, and Ctcf,
suggesting that the model performance is mainly due to these five
features. Of these 5 features, 3 are PcG-enriched (Zf5, Tcfcp2l1, Ctcf)
and 2 are PcG-depleted (E2f1, Myc), suggesting that both types of
features are important for global PcG targeting.

We then asked which genes were most likely to be PcG targets
based on the full-version model. Since our model was built upon
three different training sets and each gave a slightly different result,
we averaged the predicted propensity scores associated with each
gene. To avoid using observed PcG binding information for its own
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“prediction”, we only considered the testing set for averaging. The
results for all mouse genes are shown in Supplemental Table 3. Of the
400 genes with the highest predicted propensity scores, 368 (92%)
correspond to experimentally identified targets, suggesting these
genes are strongly sequence dependent. Gene Ontology (GO)
enrichment analysis suggests these genes are highly enriched with
regulators both for multicellular organismal development
(FDR=1.94E-20, where FDR stands for false discovery rate) and for
cellular metabolic process (FDR=9.13E-18). The prediction specific-
ity gradually decreases with less stringent criteria, but still 49%
(compared to 19.2% expected at random) of the top 5000 predicted
targets correspond to experimentally identified targets, with a
sensitivity of 61% (compared to 23.9% expected at random).

TF motifs provide additional target information than CpG density

Previous studies have implicated a role of the CpG density and
highly conserved non-coding elements (HCNE) in PcG recruitment
[4,13,23]. However, it remains unclear to what extent these sequence
features are useful for genome-wide target predictions and whether
TF motifs provide additional information. For comparison, we ranked
the genes based on the CpG density and conservation score,
respectively, and selected the top ranked genes as predictors for
PcG targets. The CpG density is indeed a good predictor
(AUC=0.7083), as expected, although less so than our TF-based
model (Fig. 2A). On the other hand, the sequence conservation score is
not a good predictor (AUC=0.5806). This is not inconsistent with
previous results [23]. While the majority of PcG targets fall into highly
conserved regions, there are also many non-target promoters that are
also highly conserved.

A different approach has been used in a recent study to predict
genome-wide PcG target CpG islands in mouse ESCs based on motif
analysis [11]. This approach first identifies discriminative TF motifs,
then predicts target CpG islands by counting the number of PcG-
enriched vs depleted motifs. About two thirds of the targets are
correctly predicted by this method. To compare the model perfor-
mance, we applied the motif-only version of our model to predict PcG
target CpG islands. Based on the ChIP-chip data in ref. [7], we
identified 6602 target CpG islands and 9346 non-targets. The
prediction of our model for target CpG islands is also good
(AUC=0.7792, Fig. 2B). For comparison, we selected the overlapping
subset of CpG islands for which our annotations agreed with that in
ref. [11], containing 2595 target and 7573 non-target CpG islands. For
this subset, our model has an 88.7% specificity at a cutoff value
corresponding to a 66.6% sensitivity. Therefore, the two approaches
perform similarly well in prediction of the total targets, although the
performance of the method in ref. [11] might be slightly over-
estimated since the PcG target status of the CpG islandswere also used
for model training. The main difference is that the prediction
outcomes of our model are more quantitative compared to those in
ref. [11]. These quantitative predictions can be used to detect subtle
differences among the PcG targets, thereby providing new biological
insights as discussed in the next section.

DNA sequence is important for PcG target plasticity

While our prediction model was based on the DNA sequence
information along with the binding profiles of seven TFs in ESCs, we
asked to what degree the predictions were valid in other lineages. To
this end, we analyzed a ChIP-seq dataset containing genome-wide
target information for H3K27me3, which is the histone modification
mark catalyzed by PcG proteins, in three cell lines: ESC, mouse
embryonic fibroblast (MEF), and neural precursor cells (NPC) [14].
The H3K27me3 targets change significantly across cell lines. Out of
3426 genes that aremarked by H3K27me3 in at least one lineage, only
516 are marked in all three lineages. The genes predicted with highest
propensity scores tend to be marked by H3K27me3 in all three
lineages.We divided all genes into four groups based on the frequency
they are marked by H3K27me3 in the three lineages. We compared
the distribution of propensity scores for different groups and observed
a consistent trend: higher propensity scores are associated with more
stably marked genes (Fig. 3A, Wilcoxon rank sum test pb6.0E-21).
This trend suggests that the propensity score of a gene may reflect the
intrinsic PcG binding stability which is independent of lineages, and
the target plasticity is highest for genes with intermediate propensity
scores.

A closer examination of the data suggests that the propensity score
is dependent not only on the overall target frequency but also on the
specific lineage in which a gene is targeted. Since our model is trained
based on ESC data, the target status in ESC has a greater impact on the
propensity score compared with the other cell lines. We refined each
group by specifying the exact target pattern, resulting in 8 subgroups.
We found that the average propensity score for (ESC+; MEF-; NPC-)
was indeed higher than that for (ESC-; MEF+; NPC+) (Supplemental
Table 3). However, after controlling for the H3K27me3 pattern in
other cell lines, the target status in a specific cell line is always
positively correlated with propensity scores. Thus the propensity
scores indeed reflect the target plasticity.

Since dynamic changes of PcG binding affinity occur during in vitro
cell differentiation [14,15], we were interested to test an association
between the PcG residence time and the propensity scores. However,
such a test cannot be done directly due to the lack of time-course PcG
binding data. To circumvent this difficulty, we recognized that the PcG
target status is strongly associated with gene expression and analyzed
a time-course gene expression dataset, where gene expression levels
were measured at Day 0, Day 2, Day 6 and Day 8 after induced
differentiation by LIF removal [7]. We reasoned that, if the propensity
scores were indeed associated with the intrinsic PcG binding stability,
then the highly scoring genes should remain repressed during
differentiation while other genes tend to be more readily activated.
Therefore, we divided the PcG target genes detected in ESCs into
groups by propensity scores and compared the expression levels for
each gene group. The gene groups with higher propensity scores
indeed remain repressed for a longer time (Fig. 3B). Interestingly, the
expression levels of different PcG target gene groups are already
markedly different in ESCs, probably reflecting variable PcG binding
stability among the target genes in ESCs.

We next tested whether the propensity scores may also be
predictive of PcG target stability under genetic perturbations. Recent
ChIP-chip experiments have shown that depletion of either Ezh2 or
Jumonji (Jmj, Jarid2) severely damages but does not completely
abolish either PcG or H3K27me3 targeting [7,44]. Of the 4010 PcG
target genes in the wild-type mouse ESC, 1161 (29%) retain the
H3K27me3 mark in the Ezh2 mutant ESC. This group of targets is
denoted as Ezh2-/-, H3K27me3+ to be distinguished from the rest,
denoted as Ezh2-/-, H3K27me3-. We found that the targets with higher
propensity scores are indeed more likely to retain the H3K27me3
mark in the Ezh2 mutant (Supplemental Table 4). For example, of the
400 PcG targets in wild-type with the highest propensity scores, 289
(72%) belong to the Ezh2-/-, H3K27me3+ category, substantially higher
than the overall frequency (29%). The overall distribution of the
propensity scores is shifted to the right for the Ezh2-/-, H3K27me3+

genes compared to the Ezh2-/-, H3K27me3- genes (Fig. 3C, t-test pb1E-
100). Consistent with these results, the enrichment bias for the TF
features is also stronger for the Ezh2-/-, H3K27me3+ genes (Fig. 3D). The
prediction for the Ezh2-/-, H3K27me3+ genes (AUC=0.9003) is also
more accurate than for the Ezh2-/-, H3K27me3- genes (AUC=0.7329).

Taken together, the above results strongly suggest that the
propensity score, which is mainly determined by the genomic
sequence, is highly correlated with intrinsic PcG binding stability
and that genes with intermediate propensity scores tend to be
associated with significant target plasticity.



Fig. 3. Predicted propensity scores reflect the overall PcG target plasticity. (A) Comparison of the propensity score distribution among different gene groups with similar H3K27me3
profiles. The number of lineages in which the genes aremarked by H3K27me3 is shown above the figure. The number of genes in each group is also shown (in parentheses). (B) Time
course gene expression level analysis. The PcG target genes in ESCs are divided into 15 roughly equal-sized groups associated with similar propensity scores (mean values shown on
the left). The heat map indicates the mean mRNA expression level within each group at different time points after LIF removal. (C) Comparison of the propensity score distributions
for the Ezh2-/-, H3K27me3+ and Ezh2-/-, H3K27me3- genes, which correspond to the subset of PcG targets that either retain or lose the H3K27me3 mark in the Ezh2-/- mutant ESCs.
(D) Enrichment score for overlap between the top 18 TF features and Ezh2-/-, H3K27me3+ or Ezh2-/-, H3K27me3- targets. The label “:ChIP” after certain TFs is used to indicate that target
information is based on ChIP-chip/seq data. The enrichment score is defined as the ratio of the observed frequency of a TF feature among PcG targets over the frequency expected by
chance.
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Evolutionary conservation of PcG target sequence specificity

Although the genomic sequences between Drosophila and mam-
mals are very different, the core PcG complex members are conserved
between Drosophila and mammals and the target genes tend to have
similar functions [9,18,45]. Therefore it is interesting to investigate to
what extent the PcG targetingmechanism is evolutionarily conserved.
Genome-wide PcG targets in Drosophila have been identified by using
ChIP-chip experiments [18]. Based on this dataset, we analyzed the
enrichment of different TF motifs with respect to the PcG target genes.
Because our goal was to compare the target sequence properties
between the two species, we included both the 569 vertebrate TF
motifs and a set of 12 Drosophila-specific TF motifs in our analysis
(Methods and Materials). The Drosophila-specific motifs were
selected from the literature based on their implication with PcG
targeting [16,18]. All these motifs are distinct from mouse motifs
except for Pho, which is similar to themouse Yy1motif. In fact, the TFs
Yy1 and Pho are homologous to each other. We found several similar
sequence features: 5 Drosophila–specific motifs and 4 vertebrate-
specific motifs are significantly enriched or depleted with the same
bias in mouse and Drosophila PcG targets (pb1E-5) (Table 1).

Unexpectedly, our analysis also identified a striking difference
between the two species. For Drosophila the TF Pho is the single most
important factor for PcG recruitment [16–19]. In mouse, the homolog
protein Yy1 is structurally similar to Pho and recognizes similar DNA
sequences (Fig. 4A). Transfected Yy1 can interact with PcG proteins
and partially rescue the Pho mutation phenotype in Drosophila [37].
Therefore we expected that Yy1 binding should be positively
correlated with PcG targets in mouse. However, our analysis shows
that the Pho/Yy1 motif sites were PcG-enriched in Drosophila but
depleted in mouse. By searching the literature, we found that similar
results have been previously found in the literature using different
approaches [11,12]. However, the role of Yy1 in PcG targeting in
mammals remains unclear.

We adapted our BART model to predict genome-wide PcG target
genes in Drosophila, replacing the predictors by the motif matching
scores corresponding to the 12 Drosophila-specific motifs. We used
the ChIP-chip data in ref. [18] for model training. The model
performance was evaluated as discussed above. We found that the
overall prediction accuracy is slightly poorer compared to mouse
(AUC=0.7877, Fig. 4B. The predicted propensity scores for all
Drosophila genes are shown in Supplemental Table 5.) We applied
the Drosophila-derived model to predict PcG targets in mouse and
found the performance is rather poor (AUC=0.5450). Removing the 4
Pho related motifs improved the prediction accuracy but only slightly
(AUC=0.5696). Next we applied the mouse-derived model to predict
PcG targets in Drosophila. The model performance is also poor
(AUC=0.6070) and only slightly improved by removing the 4 Yy1-
related motifs frommodel construction (AUC=0.6671) (Fig. 4B). The
above results suggest significant differences between the target
sequence signatures between Drosophila and mammals.

Despite the large overall differences between genome sequences
in mouse and Drosophila, the Hox gene clusters are highly conserved
and are targeted by PcG in both species. Because our above analysis



Fig. 4. Themouse and Drosophila PcG targets are associated with different sequence signatures. (A) The Pho and Yy1motifs are similar. (B) ROC curves and corresponding AUC scores
for cross-specifies prediction.
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suggests that the PcG target sequences are very different between the
species, we were interested to test whether the conservation of PcG
targeting can be explained by divergence of promoter sequences.
Drosophila contains eight Hox genes spread over two clusters: ANT-C
and BX-C. The five Hox genes in ANT-C: lab, pb, Dfd, Scr, and Antp, are
strongly homologous to the mammalian Hoxb genes: Hoxb1, Hoxb2,
Hoxb4, Hoxb5, and Hoxb6. Therefore, we compared the PcG and TF
binding patterns between the ANT-C and Hoxb clusters. All five Hox
genes at the ANT-C region in Drosophila are PcG targets (Fig. 5A),
whereas nine out of the ten Hoxb genes in mouse are also targeted by
PcG proteins. Our model correctly identified almost all the PcG targets
in these regions (Fig. 5). Strikingly, all the PcG targets at the ANT-C
locus in Drosophila are bound by Pho, whereas none of the Hoxb
cluster genes in mouse contain a Yy1 motif site. In summary, we
found that the PcG target sequences are different even at conserved
targets, suggesting strongly divergent evolution of the PcG targeting
mechanism.

Discussion

We have developed a computational approach to predict PcG
target genes based on combinations of TF features. Our model predicts
genome-wide PcG target genes in mouse ESCs with good accuracy,
especially for the top predicted candidates. The prediction power is
mainly contributed by five TF features (Zf5, Tcfcp2l1, Ctcf, E2f1, Myc).
By comparison with a previous approach [11], we found that the two
approaches performed similarly well in predicting the total number of
PcG targets. However, the outcomes of our model are more
quantitative and can be used to predict PcG targets with various
stringencies. The top predicted candidates from our model are much
more accurate than the overall average and may potentially serve as a
guide for de novo search for PREs. On the other hand, we also
recognize that a mere association does not necessarily imply active
recruitment, and that it is possible that the active recruitment sites are
located not in promoters but elsewhere.
Two of the most informative TF features, corresponding to Myc
and E2f1, belong to families of TFs that recognize similar DNA
sequences but have different biological functions. While Myc is a
potent activator of cell-cycle related genes, another family member,
Mga, is a repressor [46]. Similarly, E2f1 and E2f6 are from the same
family but the former is an activator whereas the latter is a repressor
[47]. Indeed, previous studies have found that E2f6 interacts withMga
and a number of PcG proteins [32,48]. Interestingly, the binding sites
of Myc and E2f1 are both depleted in PcG targets, but their
corresponding motif sites are enriched. We recognize that a TF
motif may correspond to multiple TFs, since multiple proteins may
recognize the same DNA sequence. Therefore the motif analysis
suggests that different members within a TF family may play
antagonistic roles in PcG targeting.

Although our model training involves only one specific cell line
(ESC), the predicted propensity scores are strongly associated with
the overall PcG target plasticity across different cell lines. Highly
scored genes are likely to be marked by H3K27me3 in multiple
lineages, to remain repressed during induced differentiation, and to
retain H3K27me3 in Ezh2 mutants. On the other hand, it is important
to recognize that the lineage-specificity of PcG targeting is ultimately
controlled by the concerted action of many factors, including not only
TFs but also chromatin modifiers [49,50] and noncoding RNAs
[25,26,51]. A comprehensive understanding of the PcG targeting
mechanismwill undoubtedly require the integration of multiple types
of information together.

We found significant differences between the PcG target sequence
properties in mouse and in Drosophila. Surprisingly, while nearly all
Drosophila PcG targets contain a Pho binding site, the Pho/Yy1motif is
actually depleted in mouse. This difference cannot simply be
explained by the overall genomic sequence differences between the
two species, since the target sequence difference is also present at
conserved genes such as the Hox gene clusters. These results suggest
that Pho/Yy1 may play very different roles in PcG targeting between
the two species. We recognize that it is also possible that the Yy1



Fig. 5. The Hox clusters are targeted by PcG in both mouse and Drosophila but their promoter sequences show different properties. (A) The Drosophila ANT-C region. (B) The mouse
Hoxb cluster. Each colored box represents a protein-coding gene, in the order of their chromosomal locations. The TSS coordinates of the genes are shown as vertical lines in the
bottom of the figure. The color indicates either presence (red) or absence (blue) of a specific feature labeled on the left. The locations of the Hox genes are marked in the above. The
label “:ChIP” after certain TFs is used to indicate that target information is based on ChIP-chip data.
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binding sites located elsewhere may play a positive role in PcG
recruitment through chromatin looping. It will be very interesting to
closely examine the role of Yy1 in PcG targeting by combined
experimental and bioinformatic methods in the future.

Materials and methods

Mouse genome sequences and annotations

Mouse genome sequences, gene annotations, and conservation
scores are downloaded from UCSC Genome Browser (http://genome.
ucsc.edu/). The genome sequence is based on the February 2006 (mm8)
genome assembly. Gene annotations are based on Refseq mRNA,
including a total of 21,115 Refseq entries, which map to 18,912 unique
gene symbols. The promoter of a gene is defined as the region between
-8kb and +2kb with respect to the TSS as in previous studies [7,28].
Conservation scores are calculated from PhastCons [52]. The conserva-
tion score of a gene is set to be the highest conservation score of the
genomic location mapped to its promoter region. The CpG density of a
gene is defined as the frequency of the dinucleotide CpG in thepromoter
region. Gene Ontology analysis is done by using the DAVID Gene
Functional Classification Tool (http://david.abcc.ncifcrf.gov/).

Target genes of PcG and TFs identified from ChIP-chip and ChIP-seq
experiments

The Ezh1, Ezh2, and H3K27me3 targets are previously identified
by ChIP-chip experiments using whole-genome tiling arrays [7]. A
promoter is called a target if it overlaps with either an Ezh1 or an Ezh2
peak (i.e., by at least one base pair) in the wild-type mouse. The

http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://dx.doi.org/10.1016/j.ygeno.2010.03.012
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genome-wide targets for 9 TFs, Oct4, Sox2, Klf4, Myc, Nanog, Dax1
(Nr0b1), Rex1, Zpf281, and Nac1 (Nacc1), are identified by ChIP-chip
using promoter tiling arrays [28]. The targets for an additional 6 TFs,
Stat3, Zfx, Esrrb, E2f1, Tcftp2l1, and Ctcf, are identified by ChIP-seq
experiments [29] and mapped to overlapping promoters. For the TFs
investigated by both studies, the target locations are based on ref. [28].

Motif analysis

Position weight matrices (PWM) are downloaded from the three
databases: 569 vertebrate motifs from TRANSFAC (Release 10.1) [31] ,
99 vertebrate motifs from JASPAR [42], and 387 mouse motifs from
UniPROBE [43] For each motif M, the raw motif matching score at a
promoter region P is calculated as

max
S∈P

log
P S jMð Þ
P S jBð Þ

� �
;

where the background frequency (B) of different nucleotides is
estimated using promoter sequences only. The raw motif matching
scores are normalized by dividing the maximum possible score. The
statistical significance of a motif score is quantified by a p-value which
is estimated based on the distribution of motif scores for 10,000 DNA
sequences of 10 kb length randomly selected from the mouse
genome. Binary calls for motif sites are determined by a cutoff score
value corresponding to p=0.005. Motifs obtained from each
databases are analyzed separately.

The enrichment score for a TF feature in PcG target genes is
defined as the ratio of the observed frequency of the feature among
PcG targets over the frequency expected by chance. For analysis of
Ezh2-/-, H3K27me3+ (and Ezh2-/-, H3K27me3-, respectively) genes, the
numerator is defined similarly, but the denominator is modified by
excluding Ezh2-/-, H3K27me3- (and Ezh2-/-, H3K27me3+, respectively)
genes. The corresponding p-values are calculated based on one-sided
Fisher exact tests with Bonferroni correction.

For Drosophila, we consider 12 motifs that have been previously
implicated in PcG recruitment [16,18], including nine motifs
corresponding to five TFs (Pho, PhoL, Dsp1, Gaf and Zeste) and
threemotifs (GT repeat, TCG triplet, and PolyA) obtained from de novo
motif search. The enrichment analysis is done as described above.

BART model

BART is a Bayesian sum-of-trees model. Briefly, the BART model

can be represented as Y = ∑
J

j=1
gðx; Tj;MjÞ

 !
+ ε;where g (x;Tj,Mj) is

a regression tree and can be viewed as an independent classifier. The
output of each “tree” is obtained by following the “branches” which
bifurcate at a series of “nodes”. A node represents a binary rule like
“does a TF X bind to a gene G”? The end of each branch is called a
terminal node, where a constant outcome is assigned to all the genes
that satisfy the same set of binary rules. The final outcome of BART is
obtained by summing up the outputs from individual “trees”.

Mathematically speaking, Tj and Mj represent the topological
structure and the terminal node values associated with the j-th tree,
respectively. For each run, 200 trees are sampled and iteratively
refined by the Gibbs sampler, which updates each tree (Tj,Mj) by
calculating the posterior distribution (Tj,Mj)|T(j),M(j),Y, based on the
current setting (T(j),M(j)), i.e., all other trees excluding (Tj,Mj). Four
types of updating changes are allowed at each time with pre-
determined probabilities: growing a terminal node, pruning a pair of
terminal nodes, changing a non-terminal rule, and swapping a rule
between parent and child. The proposed change is either accepted or
rejected based on the Metropolis-Hastings algorithm [53]. The
iteration is repeated until convergence. The computations are done
by using the BayesTree package in R with default parameters [38].
The main outcome of the BART model is a propensity score
measuring the likelihood of a given gene as a PcG target. In addition,
the relative importance of each predicting variable is evaluated by the
BART counts, that is, counting the number of times the variable appears
as non-terminal nodes. It is possible that a TF corresponds to multiple
motif variants. In this case, only the maximum count is considered.

Model validation

We use a three-fold cross-validation to validate our prediction
model. The total PcG targets are divided into three equal-sized
subsets, each containing 1323 genes. Each target subset is matched
with a randomly selected set of 1323 non-target genes. At each time,
one of the matched sets is used as the training set, whereas all
remaining genes formed the corresponding testing set. This procedure
is repeated three times so that every balanced gene set is selected for
training exactly once.

The prediction accuracy is evaluated by using the receiver
operating characteristic (ROC) curve, which plots the sensitivity,
defined as TP/(TP+FN), against the specificity, defined as TN/(TN+
FP). Notice that the x-axis actually measures 1 – specificity. The area
under the ROC curve (AUC) is used as a summary score to quantify the
overall accuracy.

Model versions

Several versions of the BART model are obtained differing in the
predicting variable selections. Each promoter is assigned with a 576
dimensional covariate vector, containing the binary outcome (pres-
ence or absence) of ChIP-chip/seq data for the 7 differentially
distributed TFs and the normalized matching scores for the 569
motifs downloaded from TRANSFAC. For the full-version model, all
576 TF features are used as predicting variables. For the motif-only
version, the ChIP-chip/seq data for 7 TFs are excluded. In addition,
reduced versions are also built by using smaller subsets of predicting
variables. Here the TF features are ranked based on their BART count
in the full-version model. Only the top TF features are selected as
predicting variables. All versions of the BART model are trained in the
same procedure as described above.

Alternative classifiers
For comparison, we also build prediction models by using two

traditional classifiers: Lasso [40] and SVM [41]. Lasso is a shrinkage and
selection method for linear regression. It was originally developed for
regular linear regression. In our analysis, we use the R package grplasso
which is a modified version for logistic regression [54]. For SVM, we
used thepackage gist (http://www.bioinformatics.ubc.ca/gist/) to do the
analysis.

CpG island analysis
15,948 CpG islands are downloaded from the UCSC Genome

Browser. A 10kb window centered at the mid-position of each CpG
island is used for annotation and prediction. A CpG island is called
PcG-positive if the corresponding 10 kb window overlaps with an
Ezh1 or an Ezh2 peak in the wild-type. The motif matching scores
associated with each CpG island are calculated as above with the
exception that the motif scanning is done by using the DNA sequence
in the 10kb window. The propensity score for each CpG island is
calculated by applying themotif-only versionmodel. The PcG-positive
CpG islands in ref. [11] are obtained by communication with Dr.
Bradley Bernstein and referred to as Ezh2 positive in their paper.

Comparative analysis

Drosophila genome sequences, gene annotations, and conservation
scores are downloaded from the Flybase (http://flybase.bio.indiana.

http://www.bioinformatics.ubc.ca/gist/
http://flybase.bio.indiana.edu/
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edu/). The genome sequence is based on the Drosophila melanogaster
genome assembly release 4.3. A total of 14,449 genes are annotated.
The promoter of a gene is again defined as the region between -8kb
and +2kb with respect to the annotated transcription start sites.

Twelve PcG-related motifs are obtained from the literature. In
particular, Zeste, polyA, TCG-triplet, and GC-repeat are obtained from
ref. [16]. DSP1_long, DSP1_short, GAF_long, GAF_short, PHO_long,
PHO_short, PHOL_long, PHOL_short are obtained from ref. [18].
Comparison between mouse and Drosophila motifs is done by using
STAMP [54]. The motif matching scores are calculated as above. For
each motif, the 4000 genes with highest matching scores are
annotated as motif sites. This is roughly equal to the number of Pho
ChIP peaks. The BART model is built as above while using the 12
Drosophilamotifs as predicting variables and the ChIP-chip data in ref.
[18] for training. This Drosophila-trained model is then applied to
mouse as described above.
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